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Massless spin4 wave equations 

R K Loide 
Tallinn Polytechnic Institute, 200 026 Tallinn, USSR 

Received 12 March 1985 

Abstract. The general form of the massless spin-3 wave equation for a symmetrical 
tensor-bispinor is given. It is shown that there exists a whole class of massless equations. 
The general form of gauge transformation and source constraint is given, and the invariant 
scalar product and Lagrangian are also presented. The y-tracelessness of a gauge field is 
not needed. It appears that the Lagrangian does not determine the equation uniquely; the 
knowledge of the invariant scalar product is also needed. 

1. Introduction 

The development of supergravity (van Nieuwenhuizen 1981) points out the importance 
of high-spin massless particles in particle physics. Supersymmetry provides two 
possible fermionic partners to the free graviton: spin-; or spin-; massless fields can 
accompany it in an irreducible supermultiplet. In the spin-; gravitino case supergravity 
provides the consistent coupling of spin-; and spin-2 fields, but if there are no particles 
of spin higher than two it is not possible to accommodate the known particle spectrum 
and symmetries. For that reason it is of interest to analyse massless spin-f fields and 
consistency conditions more thoroughly. 

In this paper we re-examine the description of massless spin-; particles with the 
help of the symmetric tensor-bispinor t V ” .  The action for JIP” was given in Schwinger 
(1970), and Fang and Fronsdal (1978) generalised the results to higher-spin fermions, 
exploiting the massive equations of Singh and Hagen (1974). The detailed derivation 
and analysis of massless spin-f equations was given in Berends et al (1979a, b, 1980). 
When gravity is coupled to spin-: the theory becomes inconsistent (Aragone and Deser 
1979,1980, Berends et a1 1980) due to the y-tracelessness of the matter gauge parameter. 
Therefore it seems that there is no hope of obtaining a consistent spin-f field theory. 
Using the modified version of the spin-projection technique (Loide 1984) we demon- 
strate that the symmetrical tensor-bispinor admits a whole class of massless wave 
equations. The general forms of the gauge transformations and source constraints are 
given. It appears that the main reason for the inconsistency, the y-tracelessness of the 
gauge parameter, is not needed. 

We use the general foimalism of spin-projection operators previously exploited in 
the massive spin-; case in Loide (1984). Our formalism differs from that of Berends 
et al (1979b) and Berends and van Reisen (1980). Our projection operators are 
connected with a fixed representation of the Lorentz group and have fixed non-localities 
which depend on the representations used. In the construction of equations the 
projection operators P ;  (‘roots’ in the terminology of the root method) are needed. 
The operation with operators II;d instead of /3> as in Berends et al (1979b) is quite 
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troublesome, The massless equations can be derived similarly to the massive ones. 
From the set of all massive equations we obtain the subset of equations which in the 
m = 0 case admit gauge transformations and give massless equations. The gauge 
transformations and source constraints are also expressed with the help of spin- 
projection operators. The invariant scalar product and Lagrangian are given. It appears 
that in the massless case the knowledge of the Lagrangian is not sufficient to derive 
an equation because the explicit form of the corresponding equation depends on the 
choice of scalar product. 

In this paper only the free field equations are given. We do not consider the 
coupling with other fields. The paper is planned as follows. Section 2 gives the 
derivation of the massless equations for (I,p” in the formalism of spin-projection 
operators. Section 3 gives the covariant form, and § 4  presents the invariant scalar 
product and Lagrangian. Section 5 gives some examples. 

6 1 / 2  p::2+:p::2++p:.;’2 a ( p : i 2 + 2 d 1 2  1 0 $1 

0 fp::’ +3 

(2.1) b(p:{2+2&:(2) c ( p 2 2  3 / 2  +2p22  I 1/2 ) dp:i2 $2 =0, 

2. General formalism of spin-projection operators 

The corresponding reduced matrices T,  (Gel’fand-Yaglom spin blocks) are the fol- 
lowing: 

(2.3) 

If we consider the massive equations T$ = m$ it is easy to verify that these are all 
multi-mass equations. In order to have a single spin-: equation the matrices ~ 3 1 2  and 
7rII2 must both be nilpotent which is impossible. 
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Next we consider gauge transformations and demonstrate that for the gauge 
invariance of equation (2.1 ) it is necessary and sufficient that det rxli2 = det rl12 = 0. 
The last conditions explain the difficulties in the zero mass limit of the spin-; and 
spin-3 equations treated in Berends et  a1 (1979b) and Berends and van Reisen (1980). 
In Berends er a1 (1979b) it is shown that for the description of a single massive spin-: 
particle one must use two representations, the symmetrical tensor-bispinor 9”” and 
bispinor A, whereas in the massless case only i,h”” is needed. The reason lies in the 
fact that in the massive case one must demand the reduced matrices 7 ~ 3 1 2  and rII2 to 
be nilpotent. The conditions det r3,* = det T , , ~  = 0, needed in the massless case, are 
weaker and need fewer representations to satisfy them. The same considerations are 
also valid in the spin-3 case. Also it is obvious why we cannot use the traceless 
tensor-bispinor $””( @‘,, = 0), since there are not enough free parameters to fulfil the 
conditions det r,,* = det rl,2 = 0. SO the symmetrical tensor-bispinor representation 
offers a minimal dimensional spin-: massless theory that can be derived from the 
Lagrangian. 

For the gauge field we choose the vector-bispinor E ” .  If  we demand, as usual, that 
the gauge transformations must be linear in derivatives, the gauge field must transform 
according to the representation 4 = (1, f )@($,  l ) ,  because it is the only representation 
which is linked with all three representations (L2  and i,h3, and is consistent with a 
given equation. We shall denote the gauge field i,h4 and not G2 because i,h4 is extracted 
from a vector-bispinor E ” .  Now the most general gauge transformation is written in 
the form 

where a and P are some parameters. 

case we get the equation 
Demanding the gauge invariance of equation (2.1), and using (Al) ,  in the spin-; 

which has non-trivial solutions iff det ~ 3 / 2  = 0, i.e. if 

ab = 2c/3. 

Now a is expressed with the help of the coefficient a, 

a = -2/3a. 

(2.5) 

Similar considerations in the spin-; case give det rIl2 = 0, which from (2.5) leads to 

ed = -27cf/ 10. (2.7) 

/3 = e/3aJ (2.8) 

The coefficient p in (2.4) has the form 

In conclusion: equation (2.1) is invariant under the gauge transformation (2.4) if 
the coefficients a, b, c, d, e and f satisfy (2.5) and (2.7). The parameters a and P in 
the gauge transformation (2.4) are expressed from (2.6) and (2.8). The conditions 
(2.5) and (2.7) followed from det r3/2 = det 7 ~ ~ , ~  = 0. 
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Analogously it is possible to verify that the gauge field must indeed transform 
according to the representation 4. If we add to +4 the bispinor in order to use the full 
vector-bispinor E” we obtain that equation (2.1) admits gauge transformations when 
a = O  which is not consistent with our previous conditions. The latter in turn means 
that there are no massless equations having the gauge transformation + 

4”’ + a f i E Y + a ” E p .  

When the conditions (2.5) and (2.7) are valid there exists an operator Q’ with the 
property Q’T = 0. Qz is expressed as 

(2.9) 

y =  -2/3b, 6 = d / 3 b j  (2.10) 

0‘ = ~ 6 1 @ : ( ~ + 2 J f p 4 1  2 1/2 Y(P:i2+fp:i2) 6P:{*l. 

Using the properties of the operators p t  (equation (Al)) ,  we obtain 

Operator Q’ gives the source constraint. In the case of an external source J we have 
an equation .rr+ = J and because Q’T = 0, J must satisfy Q’J = 0. 

3. The general covariant form 

The results of $ 2  may be written in a convenient covariant form exploiting the 
expressions of the spin-projection operators pi; ((A2) and (A4)). 

id$fi”+iA(a”y,t,bK” +aYy,+,”)+iB(yfia,+,”+ yYdr+K”) 

The general covariant form of (2.1) is 

+iC(y”dy,+“”+ yuay ,+“”)+io(af iy~+auy”)+“ ,  

+iEqp”(a,yA +aAy,)ILKA +iFqp”B+K, = 0, 

where we have denoted 

A = a / f i - f ,  B =  b l 8 - f ,  

c f e + d  1 1 c a + b  e 
18 12 6 8  6’ 8 4 12 6’ 

F=-+-+--- E =  

Equation (3.1) is invariant under the gauge transformation 

+ + 8 . 5  + a”&” +i( f ia  - 1)( y”BE” + Y”d&&) 

- i ( 8 a / 2  + l ) ( a ” y V  + aYy”)yKEK + $ 8 ( + a  +fP)qf iL”B Y , E K  

-$(l+$Jsa + J 3 p ) q ? 3 * E K  (3.3) 
where a and p are expressed from (2.6) and (2.8), and the conditions (2.5) and (2.7) 
are satisfied. 

The general source constraint Q’J = 0 has the form 

2a,JpK + f ( 8 y - i ) ~ y d ~ “  - $ ( f 8 y + i ) ~ ~ a , y ~ ~ “  

+ :8( y + $6 ) y B J - f ( 1 + i8 y + 8 6 ) a  J = 0, (3.4) 
where y and 6 are expressed from (2.10). 
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As we have mentioned in § 2, the gauge transformation extracts from E’ the 
representation ( 1 ,  f)@ (f, 1 ) .  For that reason it is not possible to choose the gauge 
yP$’“ = 0. The gauge must be chosen so that it corresponds to the representation 
( l , i ) @ ( i ,  1 ) :  y,$’”-~y”$”,  = O s  The last gauge follows from the equation 

J - ~ , ( B E ~  - i a ” y K E K  - ; y Y a K E K  +&/ayK&“)+ y,$”” = 0, 

which is (due to the results of Loide (1984)) always solvable. 

4. Invariant scalar product, Lagrangian 

The invariant scalar product which is consistent with our equation (3 .1)  is 

$ ’U $’” = (L C Y  $’” - f i l  - a /  b)$fi,,yPym$u’ - h ( 2  + a /  b - 3ad/ be)$”,$”,. 

4,” = (Lpu[77P’77u”--f(l -alb)77P,YuY’ -~ (2+alb-3adlbe)77P“77, ,1 .  

(4.1) 

This scalar product defines a conjugated wavefunction $,+” 
(4.2) 

The symmetrical choice of coefficients (a = b, d = e )  gives the simplest sca!ar prod- 
uct $,&’” = (Lw,,$’” and only in that case is the conjugated wavefunction +’” equal 
to the Dirac conjugated wavefunction $,, 

The Lagrangian is obtained from an equation r$ = 0 in the following way: 

L = $T*. (4.3) 

Using (4.2) and (3 .1)  we obtain 

L = i$p,s$’”+i&’3(3a - J s ) ( ( L p y a y y K $ K w  + $p4,yya,+Klr)  

+i&45az - 1 2 d a  +40)$,uyuByK$Kp 

+ i($ - 2 a a /  1 5  - ac/6b - ad/3b)( $pya’yy$K, 

+ $’wa,y,+“A ) + i( ac/ 8 b + ad / 6 b + adf / 4 be - i )  $’”,B $IV”. (4.4) 

The Lagrangian (4.4) is invariant under the following transformation of coefficients: 

a + a, b +  K b ,  C +  KC, d + Kd, e + Ae, f+AL (4.5) 

where K and A are arbitrary non-zero real parameters. The transformation (4.5) preserves 
the conditions det 7 ~ 3 1 2  = det = 0 and gives a subset of massless equations which 
correspond to the same gauge transformation. The given equations have different 
source constraints, different scalar products and the corresponding massive equations 
have a different mass spectrum. So we see that in the massless case the knowledge of 
the Lagrangian is not sufficient to derive an equation uniquely. In addition to L the 
invariant scalar product or conjugated wavefunction is needed. 

The transformation (4.5) is equivalent to the following redefinition of equation 
(3.1). If equation (3 .1)  is denoted by S’” = 0 then the transformation (4.5) leads to 
the equation S’” + p(  yPyKS“” + yyyKSL’ )  + u ~ ~ ” S “ ,  = 0 with parameters p and U which 
depend on the choice of K and A. 

In § 5 examples 2 and 3 are related with the help of transformation (4.5) where 
K = A = - l  2.  



816 R K Loide 

There also exists the transformation of coefficients which preserves the conditions 
det T ~ , ~  = det T , , ~  = 0 and extracts a subset of equations which correspond to the same 
source constraint. The corresponding transformation is the following: 

b + b, U + K U ,  C + KC, e + K e ,  d + Ad, f + A L  (4.6) 

where K and A are arbitrary non-zero real parameters. The given equations have different 
scalar products, different Lagrangians and the corresponding massive equations have 
a different mass spectrum. 

The transformation (4.6) is equivalent to the following field redefinition (Berends 
et ul 1979b, Berends and van Reisen 1980): 

i+v” + $ P I ’  + p (  ypyK+hKy  + y Y y u l y )  + U r y Y ( b K K  

where p and U are some parameters. 
Examples 1 and 3 in § 5 are related with the help of transformation (4.6), where 

Concluding this section it should be mentioned that the gauge transformation (3.3) 
IC, + + + Qg& and source constraint Q’J = 0 are related through the invariant scalar 
product (4.1). If, for example, we consider the interaction term ~p,@”‘  then in gauge 
transformation we obtain an additional term j,+,,Q~~:YEK which after an integration leads 
to ( Q Z K p V J p ” ) ~ , .  The last term guarantees that the Lagrangian is invariant under gauge 
transformations. 

K = A = - ~  2 -  

5. Examples 

In the previous sections we have shown that there exists a whole set of massless spin-; 
equations. Since the general expressions are quite complicated we give here some 
examples by a particular choice of coefficients a, b, c, d,  e and f: 

- 1. A = - ] ,  B=C=D=F=O (a=-&/5,  b=$/3, c = $ ,  e = d = - ’  f=’) 2 ,  2 

id*”” - iapyKt,/tKu -iaYy,JIKp = 0. (5.1) 
In the massive case ~ t c ,  = m$ we have a single mass equation which describes one 

Equation (5.1) is invariant under the gauge transformation ( a  = 1 / 6 ,  /3 = - 3 / 2 6 )  
spin-;, one spin-; and two spin-; particles with the same mass m. 

+,+“+ + p “ + a p & ” + a v & p  - f ( apy”+a”y)yK&K.  (5.2) 

2 a 7 “  -a +IpK - aKJpp = 0. (5.3) 

I jpy*py = - & f i p Y p Y u ~ u p  -wp*vv (5.4) 

The source constraint takes the form ( y = - 2 / 6 , 8  = 3 / A )  

Due to a # b the scalar product takes the form 

and the Lagrangian is 

L =  i&,+ua~p’Y-2iJCyaYy,*Kp -2i&p,yyaKqKp +2 i&pvyYayK~Kp 

+ i&p,dp y”*“ ,  + i ip ,a ,  yA+lA -;iip,s +”,. ( 5 . 5 )  

Equation (5.1) was derived and analysed in Berends et a1 (1979a, b, 1980), but the 
general expression of the gauge transformation (5.2) was not used. In the above cited 
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papers where spin-: was investigated, the gauge transformation was written in the form 
+”” + +hpv + a”&” + a’&”, where must satisfy y,~” = 0. In the free field case the given 
transformation is equivalent to our transformation (5.2), but in the presence of interac- 
tions the y-tracelessness of the gauge parameter E”  may lead to inconsistencies. 

2. B=-1, A = C = D = E = F = O  ( a = $ f i ,  b = - z f i  3 9  c = - z  3 ,  e = d = - ’  21 f = l )  2 

id$”” -iyCLa,IC/KY -iy”a,+Kp = O .  (5.6) 

In the massive case we have the same mass spectrum as in the previous case. 
Equation (5.6) is invariant under the gauge transformation (a = - 2 1 8 ,  p = 3 1 8 )  

(5.7) 

( 5 . 8 )  

IC/+” + +&” + a”& + a ” & ”  - ;( - , J ” ~ E ”  + Y ~ B E ~ ~ )  - qfiYa,EK. 

2 a d P K  -$? “a  P Y  dPu = 0. 

The source constraint is ( y  = 1 / 8 , 6  = - 3 1 2 8 )  

and the Lagrangian takes the form 

L = i + F p , ~ + ~ u  +;i$fivyYa yK+,” -~itj”,d+”,. (5.10) 

From (5.7) one can see that it is possible to choose the gauge y P I C / ” ” - ~ y ” + ” ~  =O, 
but now y ,~ ”  = O  is not needed. 

3. A = B = D = E = O ,  C = - F = b  ( a = b = ’ f i  3 9 c = s  61 e = d = - A  4 ,  f=-i)  
id+””+f i (y”dy ,~“”+  y”~yK+I*p)-$r , I .LY~+KK =o. (5.11) 

In the massive case we have one spin-; particle with mass m, one spin-; particle 
with mass 2 m / 3  and two spin-f particles with masses m and 2 m / 3 .  

Equation (5.11) is invariant under the same gauge transformation (5.7) as equation 
(5.6) and has source constraint (5.2) as equation (5.1). 

Now the scalar product is = ~ p v + p “  and the Lagrangian is the same as in 
the previous case, (5.10). Here we have an example which confirms that in the massless 
case the knowledge of the Lagrangian is not sufficient to derive an equation uniquely. 
In addition to L the invariant scalar product or conjugated wavefunction is needed. 
Equation (5.11) follows from (5.10) by varying it with respect to = $”,, equation 
(5.6) by varying (5.10) with respect to 4”” = Ic$u(qp~qu, - + q P Y y u y ,  -$qpur,py).  

4.  Fields +’Iy and A 

In this paper we do not consider the other realisations of massless spin-; equations. 
As an example we write down here one possible spin-: equation using the symmetrical 
tensor-bispinor +’I” and bispinor A. We have used the multi-mass equation and contrary 
to the results of Berends et a1 (1979b) the bispinor field A does not decouple. 

-$B+“,+$i(d,y, +aAy,)+“A - $ d h  = O .  (5.12) 
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Equation (5.12) is invariant under the gauge transformation 

by varying with respect to and 1. The invariant scalar product is $ p Y + p ” + I A .  

6. Conclusions 

In this paper we have proposed a class of massless spin$ wave equations for a 
symmetrical tensor-bispinor +@”. The general form of gauge transformation and source 
constraint is given. These equations are derivable from the Lagrangian by varying 
with respect to a conjugated wavefunction Gpv. 

All massless equations are equivalent in the free field case, but may lead to different 
results when coupled to other fields. The massive equations corresponding to the 
massless ones have in general a different mass spectrum. 

As we have shown the massless equations can be derived from the massive ones. 
One must write down the most general massive equation for a given representation 
and find a subset of equations which in the m = 0 case admit gauge invariance. In 
Berends and van Reisen (1980) the problem of massless limit of massive amplitude is 
analysed. As we have shown in the massless spin-: case (Loide and Polt 1985), the 
massless limit of massive amplitude between two external sources does not in general 
exist. In the cases when the massless limit exists this procedure is unphysical because 
it differs from the massless amplitude and for that reason does not lead to massless 
propagators. The same considerations are also valid in our spin-? case and give the 
same results. Comparing our results with the results of Fronsdal (1980a, b) on the 
smooth massless limit, it should be mentioned that this limit does not in general exist 
and the conditions on sources given in Fronsdal (1980a, b) are too restrictive. 

Appendix. Spin-projection operators 

The symmetrical tensor-bispinor +py is presented as a direct sum + = +3, 

where +hl transforms according to the representation 1 = (4, l )O(  1, #), +b2 according to 
the representation 2 = (1, i)O (f ,  1) and +3 according to the representation 3 = (i, 0)O 

We use the projection operators nf, and pf, ( i , j  = 1 , 2 , 3 )  which satisfy the relations 
(0,;). 

ngn$= a s s ’ a , k n : / ,  

n”,p”,, = ppn’,, = 8,s ~,&4:,, (‘41 1 
pf,pn’,/= a s s  a , k n : l *  

The operators IIi connect the representations which are not linked. II:{”, for example, 
is n:i2 = Pf{;2,1j(3/2,1)@ p:{,$2j(1,3,2) where the projection operator P & ) ( 3 / 2 , 1 )  extracts 
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from spin-: and the result transforms according to the representation ( t ,  1). Operators 
p i  connect the representations which are linked. for example has the form 
P I I  - ( 3 / 2 , 1 ) ( 1 , 3 / 2 ) ~ ~ ~ ~ , ~ , 2 ) ( ~ / 2 , 1 ) .  Since rIi are generated from pt we give only the 
operators pt. 

S / 2  - p5/2 

&/3 ;i2 = fl - f z  + &s - $4 + 5 )  +:(E+ 9) - flJ - +jlJ + ;(U + l3) + & 
f i p v  = &2+& - +j@+ 5)  +&+ 2) -A(&+ 9) +:lo+ iglJ -$(U+ l3) - tl4, 
&pg2 = 82 + A3 - &(6 + 2) - A l l ,  
v6P:i2 = ( 1/ 3 f i ) (  - l 2  3- - ‘3 4- + >4 2- - 26 + + 2 8 + ilJ - 4 U ) ,  

- 4 l3), = ( 1/ 3 f i ) (  - f2 - i2+ &+ - 27-t 2 9+ 

where we have denoted 

Gauge transformations are represented with the help of the vector-bispinor E’. As 
we have shown, for the gauge transformations only the representation 4 = (1, a)@ (f, 1) 
is needed. The following projection operators p:4 and p : i  extracted from the vector- 
bispinor the needed representation 4: 

(v6p:!z)’ (y* = ( l / J l S ) [  - f r / ’YByK +f7fva, -I( 2 T’KY”+ 77”,Y+)B 

-2(d’y” + a”y’)  y, + 3( V’,a” + 7 
+ (4/3U)(8”yU + d ” y ” ) B d ,  + (2/0)d’d’8y, - (8/O)a”d’d,], 
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